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Surface oscillations of smectic-A liquid crystals

D. O. Fedorov,1 V. P. Romanov,1 and S. V. Ul’yanov2
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A theoretical description of free surface motion is presented for a semi-infinite unbounded smectic-A
~Sm-A) liquid crystal. The characteristic equation is analyzed in a wide range of frequencies and wave
numbers. It is shown that at low frequencies the surface eigenmotion is a wave of the second sound type. The
wave velocity is twice that of the maximum second sound velocity in the bulk phase. This Rayleigh mode may
be excited and detected as surface transverse waves. At high frequencies the surface eigenmotion is a damping
viscous mode. The spectral intensities of the surface displacement fluctuations are presented in rather simple
form for separate areas of wave numbers and frequencies. These results may be used to describe light scatter-
ing experiments. It is shown that the surface tension is negligible when describing Sm-A surface eigenmotions,
in contrast to ordinary liquids. At the same time the surface tension is sufficient for surface displacement
fluctuations at low frequencies.

PACS number~s!: 61.30.Cz, 61.30.Gd, 68.15.1e, 83.70.Jr
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I. INTRODUCTION

Surfaces of liquid crystals are currently under intens
study both theoretically and experimentally. Considerable
tention has been given to studying light and x-ray scatter
ellipsometry, mechanical oscillations of the surface, etc.@1#.
Smectic liquid crystals attract special interest due to the p
sibility of producing freely suspended films ranging fro
several hundred down to two- on three-layer thickness.

While the static properties of smectic-A ~Sm-A) films
have been studied in detail@2–6#, their dynamic properties
are much less well understood. The theory of Sm-A film
oscillations was developed in@7–10#. The influence of sur-
face tension and elastic constantB on the spectrum of eigen
frequencies was studied in Ref.@7# within the framework of
a model of discrete layers. This method was further dev
oped for investigation of the dynamic behavior of the d
placement and density autocorrelation functions in SmA
films @8,9#. The dependences of relaxation times on la
sliding viscosity and surface tension were studied. The
sults derived were used for analyses of the experimental
obtained by the method of soft-x-ray photon spectrosco
The problem of Sm-A surface oscillations in a sample o
infinite thickness was studied in@11#. In this work the spec-
tral intensities of the thermal surface fluctuations were c
sidered for a slowly damping mode. In Ref.@10# freely sus-
pended Sm-A films of finite thickness are analyzed in th
framework of a continuous model, taking into account t
mutual influence of the surfaces. In particular, two surfa
dynamic modes, undulation and a peristaltic mode, w
found. It was shown that a light scattering experiment m
be used for the determination of viscosity and elastic coe
cients.

Recently, the surface motions have been investigated
intensively in concentrated polymer solutions and soft g
@12–15#. These systems manifest solidlike and liquidli
properties in various conditions as well as Sm-A behavior.
The most interesting surface motions are in the region of
wave numbers and low frequencies. In recent years the
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face hydrodynamics of these materials have been made
perimentally accessible thanks to surface laser light sca
ing and excited surface wave techniques@16#. That is, by
these methods the crossover from ordinary capillary wave
Rayleigh elastic mode was observed@12–15#. As far as we
know the analogous experiments for Sm-A systems have no
been carried out, though similar effects may be expected
Sm-A surfaces.

In the present work the problem of the existence of s
face eigenmotions is analyzed in a wide range of frequen
and wave vectors. The spectral intensities of thermal surf
fluctuations are calculated also. The work is organized
follows. In Sec. II all necessary equations and boundary c
ditions are presented. In Sec. III the problem of the surf
eigenmotions is solved based on analysis of the bulk
surface characteristic equations. In Sec. IV the spectral
tensities of the thermal surface fluctuations are calculated
discussion of the results obtained is presented in conclus

II. EQUATIONS OF MOTION

Smectic-A surface oscillations are considered in the sa
way as for an isotropic viscous liquid@17#. The free surface
is supposed boundless, and a solution of the equation
motion will be derived in the form of plane waves, underg
ing damping with depth in a liquid crystal. The general s
lution and the character of decay of the waves will be fou
from the equations of motion while the characteristic eq
tion and the wave amplitudes will be obtained from t
boundary conditions.

In equilibrium the free surface of a Sm-A liquid crystal is
flat, and the smectic layers are located parallel to the surf
We use the Cartesian coordinate frame so that the planexy
coincides with the equilibrium position of the free surfac
the equilibrium smectic occupies the half spacez<0. We
suppose that the amplitude of surface displacementz is much
less than the wavelength. We represent the solution of
equations of motion as plane waves propagating along thx
direction so that along they axis the system is homogeneou
In this case the density of elastic free energy is given by
681 ©2000 The American Physical Society
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F5
1

2
BS ]u

]zD 2

1
1

2
KS ]2u

]x2D 2

, ~2.1!

whereu is the layer displacement from the equilibrium p
sition, andB andK are the layer elastic moduli.

In what follows we suppose the liquid crystal to be i
compressible, i.e., the considered velocities of motion
much less than the sound velocityc, and for the circular
frequencyv and wave numberq the inequalityv!cq is
valid. In this approximation the system satisfies the follo
ing equations of motion@18–20#:

]vx

]x
1

]vz

]z
50,

r
]v i

]t
52] i p1] j s i j8 1hd iz , i 5x,z, ~2.2!

]u

]t
5vz1lph.

Herevx ,vz , andp are the velocity components and pressu
respectively,s i j8 is the viscous stress tensor,lp is the per-
meation constant, andh is expressed as@18–20#

h5B
]2u

]z2
2KS ]2

]x2D 2

u. ~2.3!

In Eq. ~2.2! we sum over repeated indices, and the notati
]x[]/]x and]z[]/]z are used.

A set of equations of motion should be supplemented
boundary conditions. The surface waves have to vanish
z→2`,

lim
z→2`

vx,z50. ~2.4!

The tangential component of the stress tensor should
equal to zero,

sxz50, ~2.5!

and the jump of the normal component of the stress tens
compensated by the capillary pressure on the surface,

szz2szz
ext2g

]2z

]x2
50. ~2.6!

Hereg is the surface tension, ands i j is the stress tensor,

s i j 52pd i j 1s i j8 1s i j
r .

The viscous stress tensor in incompressible Sm-A has the
form @18#

s i j8 52h2v i j 12~h32h2!~v izd jz1v jzd iz!1h8vzzd izd jz ,

where v i j 5
1
2 (] iv j1] jv i), and h85h11h224h322h5

1h4 @10,18#. The ‘‘reactive part’’ of the stress tensor,s i j
r ,
e

-

,

s

y
as

be

is

caused by the inhomogeneous displacement of the sm
layers, has the following components occurring in the bou
ary conditions@20#:

szz
r 5B

]u

]z
,

sxz
r 52K

]3u

]x3
.

Above the surface of the Sm-A liquid crystal the stress tenso
is determined only by the external pressure,

s i j
ext52pextd i j .

The last boundary condition is the impermeability of the s
face,

]z

]t
5vz . ~2.7!

The equations of motion~2.2! and the boundary condition
~2.4!–~2.7! determine the surface motions in Sm-A liquid
crystals.

We shall obtain the solution of the set of equations
motion ~2.2! in the form of plane waves where the depe
dence on space coordinates and time is determined by a
tor exp(qzz1iqx2ivt), where theq value is supposed to b
real and positive. In this case we get a system of algeb
equations for the amplitudes:

iqvx1qzvz50,

@ ivr1h3qz
22~2h22h3!q2#vx2 iqp50,

@ ivr1~h822h213h3!qz
22h3q2#vz

1~Bqz
22Kq4!u2qzp50,

vz1@ iv1lp~Bqz
22Kq4!#u50. ~2.8!

For determination of the Sm-A surface eigenmotions we pu
the determinant of the system~2.8! equal to zero. Thus we
obtain the bulk characteristic equation, connectingqz , q,
andv. It is convenient to introduce the dimensionless va
ableS5qz /q and to present the bulk characteristic equat
as

S61A~q,v!S41B~q,v!S21C~q,v!50, ~2.9!

where

A~q,v!5 ivtp2S 21
h8

h3
D ,

B~q,v!5
tp

tM
2 ivtpS 21

h8

h3
D2

v2tp

c2
2q2tM

, ~2.10!

C~q,v!52
tp

tM
~lq!21 ivtp1

v2tp

c2
2q2tM

.
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Heretp51/lpBq2 is the permeation characteristic time,tM

5h3 /B is the Maxwell relaxation time,c25AB/r is the
second sound velocity, andl5AK/B is the characteristic
length of a smectic structure.

Equations~2.9! and ~2.10! are obtained under condition
lq!1 andtv!tp . The first inequality means that the inho
mogeneity length is much greater than the interlayer d
tances. The second condition means that the shear wav
laxation time tv5r/h3q2 is much smaller than the
permeation characteristic time. Using typical numerical v
ues of Sm-A material parameters@19# K;1026 dyn, B;2
3107 dyn/cm2, lp;10214 cm4/dyn s, r;1 G/cm3, h3
;10 Pz, we getq!53106 cm21 from the first condition.
As for the conditiontv!tp , it is essentially always satisfied

It is convenient to consider Eq.~2.9! as the equation de
terminingSas a function ofq andv. This equation has thre
solutionsSk(q,v), k51,2,3, with positive real parts, provid
ing the damping of surface waves with depth,z→2`. Us-
ing the notationu1 ,u2, and u3 for the amplitudes of the
corresponding displacements we get the general solutio
the system~2.8! in the form

u5exp~ iqx2 ivt !(
k51

3

uk exp~Skqz!,

vx5exp~ iqx2 ivt !(
k51

3

~v2 iLk!Skuk exp~Skqz!,

vz5exp~ iqx2 ivt !(
k51

3

~2 iv2Lk!uk exp~Skqz!,

p5exp~ iqx2 ivt !(
k51

3

$ ivr1@h3~Sk
211!22h2#q2%

3~2 iv2Lk!
Sk

q
uk exp~Skqz!, ~2.11!

where

Lk5tp
21@Sk

22~lq!2#.

The amplitudesu1 ,u2 ,u3 can be obtained from the
boundary conditions~2.5!–~2.7! which can be referred to th
plane z50 due to the smallness of the oscillations. Aft
substitution of the general solution~2.11! into the boundary
conditions we obtain a set of equations for the amplitu
u1 , u2, andu3:

(
k51

3

@h3~v2 iLk!~Sk
211!1 iKq2#quk50, ~2.12!

(
k51

3 S BSkq1gq22@vr1 ih3~32Sk
2!q21 ih8q2#

3~v2 iLk!
Sk

q Duk52pext~q,v!, ~2.13!

(
k51

3

Lkuk50. ~2.14!
-
re-

l-

of

s

Subsequently the function2pext(q,v) will be used as an
external force for the calculation of the response function
order to find the Sm-A surface eigenmotions we suppose t
external pressure to be equal to zero,pext50.

For the existence of a nonzero solution of Eqs.~2.12!–
~2.14! whenpext50, the system determinant should be equ
to zero. This condition is the surface characteristic equa
connectingv with q. In general this equation is very com
plicated, but it can be simplified using the smallness of
permeation constantlp . It should be noted that contribution
of various modes to the total displacementu are nonequiva-
lent. First of all we are interested in weakly damped mod
0,ReSk<1, which have the largest amplitudes@10#. Be-
cause of the smallness of the permeation constantlp the
inequalitiesuA(q,v)u, uB(q,v)u, uC(q,v)u@1 are valid es-
sentially always. Hence the solution of the bulk characteris
equation Eq.~2.9!, which is determined by the permeatio
S3

2'2 ivtp , satisfies the inequalityuS3
2u@1. The rest solu-

tions uS1u,uS2u!uS3u may be found from the equation

ivtMS41F12 ivtMS 21
h8

h3
D2

v2

c2
2q2GS2

2S l2q22 ivtM2
v2

c2
2q2D 50. ~2.15!

Then, as was pointed out in@10,11#, from the boundary con-
ditions ~2.12! and ~2.14! it follows that uu3u!uu1u,uu2u.
Therefore we neglect the permeationtp

2150, and we can
sum over two indices in the general solution~2.11! and in the
boundary conditions~2.12!–~2.14!, which transforms them
to the equations

(
k51

2

@h3v~Sk
211!1 iKq2#quk50, ~2.16!

(
k51

2 S BSkq1gq22@vr1 ih3~32Sk
2!q21 ih8q2#

vSk

q Duk

50. ~2.17!

Equations~2.16! and ~2.17! are the boundary conditions fo
the tangential and normal components of the stress ten
respectively. The surface impermeability condition~2.14! is
fulfilled automatically.

III. ANALYSIS OF CHARACTERISTIC EQUATIONS

To obtain the surface eigenfrequenciesv and the rate of
dampingS for a given wave numberq it is necessary to solve
a system including bulk@Eq. ~2.15!# and surface characteris
tic equations that is obtained by equating to zero the de
minant of the system~2.16!,~2.17!. The factors of powers of
S in Eq. ~2.15! have rather complicated dependences onv
andq. In practice the problem is in determining the chara
teristic curves in the plane (uvu,q) that describe the variou
types of eigenmotions. The general solution of this probl
is rather cumbersome. Therefore it is convenient to sepa
the plane (uvu,q) into regions where it is possible to simplif
Eq. ~2.15!. These regions are presented in Fig. 1.
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A. Region I

First, we investigate the low-frequency area which is d
fined by the inequalities

uvu!
1

tM
,

uvu!c2q. ~3.1!

In this area there is only one solution of the bulk charac
istic equation~2.15! satisfying the condition ReS1!1,

S15S ~lq!22 ivtM2
v2

c2
2q2D 1/2

, ReS1.0. ~3.2!

The second solution may be found from the equality

S2
2'

i

vtM
.

This solution obeys the inequalityuS2
2u@1. It follows from

the tangential boundary condition~2.16! that this mode has a
very small amplitude. Thus this mode can be neglected in
boundary condition~2.17! for the normal component of th
stress tensor@10,11#, and Eqs.~2.16! and ~2.17! may have a
nonzero solution only when the surface characteristic eq
tion

BS1q1gq22
S1

q
v~vr13ih3q21 ih8q2!50 ~3.3!

is valid.
As follows from conditions~3.1!, we may neglect the las

term in Eq.~3.3! and it transforms to

S152
gq

B
, ~3.4!

FIG. 1. The ranges in theuvu,q plane suitable for analyses o
the surface eigenmotions. I, Eq.~3.1!; II, Eq. ~3.5!; III, Eqs. ~3.12!
and ~3.13!.
-

r-

e

a-

whereS1 is given by Eq.~3.2!. Obviously, Eq.~3.4! is in-
soluble because of the negativity on its right-hand side. T
the surface eigenmotions are absent in region I.

B. Region II

The region II is defined by the conditions

v2'c2
2q2, uvu!

1

tM
. ~3.5!

Its width is determined by the inequality

U12
v2

c2
2q2U!uvutM .

In this area the bulk characteristic equation has the form

S45
ivr

h3q2
. ~3.6!

Both solutions of this equation with positive real parts ob
the relation ReS1,2.1.

The surface characteristic equation follows from boun
ary conditions~2.16! and ~2.17!. Since in Sm-A liquid crys-
tals inequalityKr/h3

2!1 is fulfilled it is possible to neglec
the term withK in Eq. ~2.16!. Moreover we can putg50 in
Eq. ~2.17! as long as in this area the conditiongq/B!1 is
valid. Thus we have

~S1
211!u11~S2

211!u250, ~3.7!

S Bq2
vr2

q D ~S1u11S2u2!50. ~3.8!

The determinant of the system~3.7! and ~3.8! will be equal
to zero for

v56c2q. ~3.9!

This means the possibility of existence in Sm-A liquid crys-
tal of a propagating surface Rayleigh wave of the seco
sound type. This surface wave is formed by two mod
whose damping width depth is determined by the fac
exp(S1,2qz), where

S1,25A4 vr

h3q2

A27A27 iA26A2

2
. ~3.10!

The amplitudes of these modes are connected by cond
~3.7!.

Taking into account the wave attenuation we obtain
characteristic frequency

v56c2q2 iv9, v95Ah3c2

8r
q3/2. ~3.11!

Thus, surface eigenwaves of the second sound type ca
detected in Sm-A liquid crystals under conditions
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PRE 62 685SURFACE OSCILLATIONS OF SMECTIC-A LIQUID CRYSTALS
v!
1

tM
'23106 sec21,

q!
1

c2tM
'43102 cm21.

It is necessary to note that second sound cannot propaga
bulk along smectic planes because the interlayer dista
are invariable in this transverse wave, contrary to the surf
Rayleigh wave obtained.

C. Region III

The region III is restricted by fulfillment of either one o
inequalities

uvu@
1

tM
, ~3.12!

or

uvu@c2q. ~3.13!

Here the bulk characteristic equation has almost the s
form as for an isotropic liquid@17#,

S42S 21
h8

h3
2 i

vr

h3q2D S2112 i
vr

h3q2
50. ~3.14!

The difference is the presence of the viscosity coefficienth8,
which equals zero in ordinary liquids. This equation has t
solutions with ReS1,2.0, uS1,2u>1. The boundary condi-
tions on a surface lead to the system of equations

(
k51,2

S Bq2
v

q
@vr1 ih3~32Sk

2!q21 ih8q2# DSkuk50,

~3.15!

and Eq.~3.7!. In Sm-A @21,22# the viscosities obey the in
equality h8!h3, and we neglecth8 for simplicity. In this
case the system~3.7!, ~3.15! may be easily solved. The root
of Eq. ~3.14! are known for the similar problem of surfac
oscillations in an isotropic liquid@17#:

S151,

S25S 12 i
vr

h3q2D 1/2

. ~3.16!

By equating to zero the determinant of the system~3.7!,
~3.15! we get the surface characteristic equation

S 22 i
v

c2
2tMq2D S 12

v2

c2
2q2

22ivtM D
52A12 i

v

c2
2tMq2

~122ivtM !. ~3.17!

In the area ofv,q satisfying the condition
in
es
ce

e

o

uvu

c2
2tMq2

<1,

we may replace the square root in Eq.~3.17! by the first three
terms of a power series expansion. In this case the cha
teristic equation is reduced to a linear one with a solution
the diffusion type,

v52 i
4h3q2

3r
. ~3.18!

The parameter of the expansion appears not to be small
accounting for one more term results in only small corre
tions of numerical factors.

For

uvu

c2
2tMq2

@1,

Eq. ~3.17! has no solutions~see the Appendix!. In the area

uvu2

c2
2q2

;uvutM;1

the surface characteristic equation can be solved only
merically.

Figure 2 shows the dependence ofq on uvu obtained from
solution of the characteristic equations.

IV. SURFACE FLUCTUATIONS

Surface laser light scattering is the most effective meth
for studying surface motions@16#. By this method it is pos-
sible to measure a power spectrum of thermal fluctuations
low wave numbers,q;102 cm21, @12–15#. The spectral in-
tensity, or power spectrum, of surface displacement fluct
tions ^uzqu2&v may be obtained using the fluctuation
dissipation theorem@23#

^uzqu2&v5
2kBT

v
Im x~q,v!, ~4.1!

FIG. 2. Solutions of characteristic equation:~1!, v5c2q in re-
gion II; ~2!, v52 i4h3q2/3r in region III.
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where the response functionx(q,v) is determined by the
relation

z52x~q,v!pext. ~4.2!

Here the frequencyv is real.
The general expression for the response function is ra

cumbersome. Therefore we consider expressions for
spectral intensity of surface fluctuations for several regi
of q andv only.

A. Region I

In area I defined by conditions~3.1!, together with the
inequality ql!1, we select three areas Ia, Ib and Ic
shown in Fig. 3. These areas are determined by the follow
conditions:

v!
Kq2

h3
, Ia ,

Kq2

h3
!v!

h3q2

r
, Ib , ~4.3!

h3q2

r
!v!c2q, Ic .

In area Ia we can obtain from Eq.~3.2!

S1'qlS 12 i
vtM

2~ql!2D .
b

er
he
s

g

Hence, the spectral intensity of surface displacement fluc
tions is

^uzqu2&v'
4kBTl

h3~v214~K1gl!2q4/h3
2!

. ~4.4!

In area Ib we get from Eq.~3.2!

S1'~12 i !AvtM

2 S 11 i
~lq!2

2vtM
D ,

FIG. 3. Regions where the spectral intensities of fluctuatio
may be written in closed form: Ia, Ib, Ic, Eqs.~4.3!; II, Eq. ~3.5!;
IIIa, IIIb, Eqs. ~4.8! and ~4.10!.
^uzqu2&v'
2A2kBT

ABh3qv3/2
3

12~lq!2/2vtM

@11A2vtMgq/h3v1~lq!2/2vtM#21@12~lq!2/2vtM#2
. ~4.5!
es
In area Ic the damping of the surface wave is determined
the factor

S15
tMc2q

2
2 i

v

c2q
,

whereuIm S1u@Re S1. For ^uzqu2&v we obtain in this area

^uzqu2&v5
2kBT

ABr~v21h3
2q4/4r2!

. ~4.6!

B. Region II

In region II, restricted by conditions~3.5!, we get

^uzqu2&v5kBTS h3q

c2
5r5D 1/4

a1~c2
2q22v2!1a2vv9

~v22c2
2q2!214v2v92

,

~4.7!

where
y a1,25A21A27A22A2,

andv9 is given by Eq.~3.11!. The expression~4.7! for the
spectral intensity of fluctuations is valid for low frequenci
uvu!tM

21 and in a rather narrow region only,

uv2c2qu,v9.

C. Region III

In the area IIIa determined by the inequalities

vtM!
v2

c2
2q2

,

v

c2q
@1, ~4.8!

it is possible to omit the mode with damping factorS2, Eq.
~3.16!. In this case we obtain
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^uzqu2&v5
4kBTh3q3

r2v4
. ~4.9!

In the area IIIb determined by the conditions

vtM@1,

vtM>
v2

c2
2q2

, ~4.10!

it is necessary to keep both modes in Eq.~3.16!. Thus, we
have

^uzqu2&v5
4kBTqG~q!

3rv2@v21G2~q!#
, ~4.11!

where

G~q!5
118c2

2tM
2 q2

6tM
.

The typical spectral intensities of surface displacem
fluctuations are shown in Figs. 4 and 5 as functions of f
quency. For wave numbers obeying the inequalityq
@1/c2tM there is only one peak,v50, which corresponds
to the overdamped regime~Fig. 4!. For q!1/c2tM an addi-
tional peak appears atv'c2q corresponding to the elasti
regime ~Fig. 5!. As q increases the peak moves to high
frequency, accompanied by a considerable spectral broa
ing. This additional peak is much smaller than the peak
v50.

FIG. 4. The frequency dependence of the spectral intensit
surface fluctuationsI 5^uzqu2&v /kBT calculated by Eqs.~4.4!, ~4.5!,
and ~4.11! for q5104 cm21.
t
-

r
n-
t

V. DISCUSSION

In this paper we analyzed the characteristic equation
showed that at low frequenciesuvu!tM

21 the Sm-A surface
eigenmotions are propagating waves of the second so
type. These Rayleigh waves are caused by the elastic fo
arising from inhomogeneous undulation. Surface tens
does not affect the surface eigenmotions, in contrast to
case of Sm-A thin films @7#. The character of propagatio
and decay of these waves is described by Eqs.~3.9!–~3.11!.

As far as we know these elastic waves have not yet b
observed experimentally at the Sm-A surface. At the same
time, Rayleigh modes have been registered at the surface
polymer solutions@12–14# and soft gels@15#. In these sys-
tems the crossover from capillary to elastic waves was
served.

At high frequenciesuvu@tM
21 , the eigenmotions repre

sent damping shear waves similar to waves in isotropic
cous liquids. For these waves the bulk attenuation coeffic
is of the same order as the wave number of the surface w
@17#. However, there is an essential difference between
eigenfrequencies of surface motions in Sm-A liquid crystals
and in viscous isotropic liquids@17#. It is connected with the
considerable difference between the boundary condition
the normal component of the stress tensor in Sm-A liquid
crystals and isotropic liquids. This occurs because SmA
elastic properties are mainly determined by the coefficienB.
We may neglect surface tension for Sm-A liquid crystals
because of the validity of the inequalitygq/B!1. One
would expect the surface tension to be important in the
cinity of the transition to the nematic phaseTNA , where the
elastic modulusB tends to zero. But this decrease is rath
slow @24#, namely, B;tf, where t5(TNA2T)/TNA , f
;0.3–0.4. Therefore the surface tension is important in
extremely narrow thermal interval.

Low frequency motions may be investigated by mecha
cal excitation of surface waves in such a way as was done

of
FIG. 5. The frequency dependence ofI calculated by Eqs.~4.6!,

~4.7!, and ~4.9! for q550 cm21 ~solid line!; q5100 cm21

~dashed line!.
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soft gels@15#. It would be interesting to measure the surfa
second sound velocity which according to Eq.~3.9! should
be twice the maximum velocity of second sound in the bu

The calculated spectral intensities of surface displacem
fluctuations characterize thermal Sm-A surface oscillations.
The results obtained are suitable for description of the li
scattering spectrum in optical experiments. A contour of L
entz type should be exhibited for low frequencies in acc
dance with Eq.~4.4!. In the intermediate region of frequen
cies the form of the contour, Eq.~4.5!, is sensitive to surface
tension, in contrast to the surface eigenmotion spectrum.
higher frequencies the spectral intensities of surface fluc
tions, Eqs.~4.9!–~4.11!, decrease more rapidly, i.e.,;v24.

APPENDIX

Under the condition

uvu@c2
2tMq2, ~A1!
,

u,

D.

n

.
nt

t
-
-

or
a-

Eq. ~3.17! reduces to

A2 i
v

c2
2tMq2

v

c2
2q2

54ivtM22. ~A2!

For uvu<tM
21 Eq. ~A2! has no solutions obeying the in

equalities~A1! and uvu@c2q.
When uvu@tM

21 , Eq. ~A2! transforms to

S v

c2
2tMq2D 3/2

524A2 i . ~A3!

The solution of Eq.~A3! contradicts Eq.~A1!. Thus we may
conclude that the surface characteristic equation~3.17! has
no solutions under condition~A1!.
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