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Surface oscillations of smectidA liquid crystals
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A theoretical description of free surface motion is presented for a semi-infinite unbounded stnectic-
(Sm-A) liquid crystal. The characteristic equation is analyzed in a wide range of frequencies and wave
numbers. It is shown that at low frequencies the surface eigenmotion is a wave of the second sound type. The
wave velocity is twice that of the maximum second sound velocity in the bulk phase. This Rayleigh mode may
be excited and detected as surface transverse waves. At high frequencies the surface eigenmotion is a damping
viscous mode. The spectral intensities of the surface displacement fluctuations are presented in rather simple
form for separate areas of wave numbers and frequencies. These results may be used to describe light scatter-
ing experiments. It is shown that the surface tension is negligible when describidgshiniace eigenmotions,
in contrast to ordinary liquids. At the same time the surface tension is sufficient for surface displacement
fluctuations at low frequencies.

PACS numbefs): 61.30.Cz, 61.30.Gd, 68.156e, 83.70.Jr

[. INTRODUCTION face hydrodynamics of these materials have been made ex-
perimentally accessible thanks to surface laser light scatter-
Surfaces of liquid crystals are currently under intensiveing and excited surface wave techniqués$). That is, by
study both theoretically and experimentally. Considerable atthese methods the crossover from ordinary capillary wave to
tention has been given to studying light and x-ray scatteringRayleigh elastic mode was observiel®—15. As far as we
ellipsometry, mechanical oscillations of the surface, tg.  Know the analogous experiments for Ssystems have not
Smectic liquid crystals attract special interest due to the pod2€€n carried out, though similar effects may be expected for
sibility of producing freely suspended films ranging from SM# surfaces.

several hundred down to two- on three-layer thickness. In the present work the problem of the existence of sur-
While the static properties of smectic-(SmA) films face eigenmotions is analyzed in a wide range of frequencies
have been studied in detd—6], their dynamic properties and wave vectors. The spectral intensities of thermal surface

are much less well understood. The theory of &nfdm IIL:ICtuatch)nsS are”calllculated also. Thte work (ljsborga:jnlzed as
oscillations was developed {iT—10). The influence of sur- '0OWS. IN S€C. 1l allnecessary equations and boundary con-

face tension and elastic constéhbn the spectrum of eigen- d!t|ons are pre_sented. In Sec. ll the prob_lem of the surface
frequencies was studied in R&¥] within the framework of eigenmotions is solved based on analysis of the bulk and

a model of discrete layers. This method was further devel_surface characteristic equations. In Sep. IV the spectral in-
oped for investigation of the dynamic behavior of the dis-tensities of the thermal surface fluctuations are calculated. A

placement and density autocorrelation functions in Sm- discussion of the results obtained is presented in conclusion.

films [8,9]. The dependences of relaxation times on layer
sliding viscosity and surface tension were studied. The re-
sults derived were used for analyses of the experimental data SmecticA surface oscillations are considered in the same
obtained by the method of soft-x-ray photon spectroscopyway as for an isotropic viscous liqu[d7]. The free surface
The problem of SmA surface oscillations in a sample of is supposed boundless, and a solution of the equations of
infinite thickness was studied [11]. In this work the spec- motion will be derived in the form of plane waves, undergo-
tral intensities of the thermal surface fluctuations were coning damping with depth in a liquid crystal. The general so-
sidered for a slowly damping mode. In R€10] freely sus- lution and the character of decay of the waves will be found
pended SnA films of finite thickness are analyzed in the from the equations of motion while the characteristic equa-
framework of a continuous model, taking into account thetion and the wave amplitudes will be obtained from the
mutual influence of the surfaces. In particular, two surfaceboundary conditions.
dynamic modes, undulation and a peristaltic mode, were In equilibrium the free surface of a Sadiquid crystal is
found. It was shown that a light scattering experiment mayflat, and the smectic layers are located parallel to the surface.
be used for the determination of viscosity and elastic coeffiWe use the Cartesian coordinate frame so that the plane
cients. coincides with the equilibrium position of the free surface;
Recently, the surface motions have been investigated vemhe equilibrium smectic occupies the half spase0. We
intensively in concentrated polymer solutions and soft gelsuppose that the amplitude of surface displaceniésmmuch
[12-15. These systems manifest solidlike and liquidlike less than the wavelength. We represent the solution of the
properties in various conditions as well as &nbehavior.  equations of motion as plane waves propagating along the
The most interesting surface motions are in the region of lowdirection so that along thgaxis the system is homogeneous.
wave numbers and low frequencies. In recent years the sufn this case the density of elastic free energy is given by

II. EQUATIONS OF MOTION
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1 (ou\2 1 [o%u\? caused by the inhomogeneous displacement of the smectic
F= EB(_ + EK — | (2.1 layers, has the following components occurring in the bound-
9z X ary conditiong20]:
whereu is the layer displacement from the equilibrium po- . du
sition, andB andK are the layer elastic moduli. 027~ BE’

In what follows we suppose the liquid crystal to be in-

compressible, i.e., the considered velocities of motion are 3

- . aJ°u
much less than the sound velocity and for the circular ol,=—K—.
frequencyw and wave numbeq the inequalityw<cq is ax3

valid. In this approximation the system satisfies the follow-

ing equations of motiof18—20; Above the surface of the Sivdiquid crystal the stress tensor

is determined only by the external pressure,
vy vz

w0 o=~ PexiSij -
The last boundary condition is the impermeability of the sur-
av;
pa_tlz_alp+0”] O'i,j‘i‘héiz! i:X,Z, (22) face'
¢
au ot V2 (2.7
o =v,+ )\ph.

The equations of motiof2.2) and the boundary conditions
e(2.4)—(2.7) determine the surface motions in Sinliquid
crystals.

We shall obtain the solution of the set of equations of
motion (2.2) in the form of plane waves where the depen-
24 ( P2 )2 dence on space coordinates and time is determined by a fac-

u

Herev,,v,, andp are the velocity components and pressur
respectively,oi’j is the viscous stress tensav, is the per-
meation constant, arldlis expressed gs8—2(

(2.3 tor exp@,z+igx—iwt), where theq value is supposed to be
real and positive. In this case we get a system of algebraic
equations for the amplitudes:

In Eq. (2.2) we sum over repeated indices, and the notations

d,=dl ax and 3,= a9l 9z are used. iquy+0.v,=0,

A set of equations of motion should be supplemented by _ ) _
boundary conditions. The surface waves have to vanish as [iwp+ 750, (272~ 73)9%Jv,—iqp=0,
Z— — o,

_ [iwp+ (7' =275+ 373)0— 739%]v,
lim vx,zzo- 2.4 2 4
A +(Bg;—Kg*)u—q,p=0,

The tangential component of the stress tensor should be v+ [iw+Np(Bgi—Kg*)u=0. (2.9
equal to zero,
For determination of the SmA-surface eigenmotions we put
0y,=0, (2.5  the determinant of the syste(R.8) equal to zero. Thus we
obtain the bulk characteristic equation, connectqg q,
and the jump of the normal component of the stress tensor ignd w. It is convenient to introduce the dimensionless vari-

compensated by the capillary pressure on the surface,  apleS=q,/q and to present the bulk characteristic equation
as
ext 825
T2 0y — 7ﬁ=0- (2.6 SP+A(Q,w)S*+B(q,0)SP+C(q,w)=0, (2.9
. . . where
Here y is the surface tension, ang; is the stress tensor,
. 7'

oij=—p5ij+0'i'j+airj. A(q,w)=|w7p—(2+%),

The viscous stress tensor in incompressible Aras the , )
T W T,
form [18] B(g,0)=—"—iwT, 2+ |- ., (210
/ , ™ 73/ c50%Ty
0} = 21204+ 2(73= 72)(Viz0j2 TV 26i2) + 7' V220262,
1 , Tp 2. szp

where vij=3(dvj+djv;), and ' =9+ 9,—4n3—27s C(g,w)=——(A\q)*+ior,+ -
+ 7, [10,18. The “reactive part” of the stress tenscn‘{j , ™ C20"7m
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Here 7,= 1/)\qu2 is the permeation characteristic timg,
=73/B is the Maxwell relaxation timec,=\B/p is the
second sound velocity, and=/K/B is the characteristic
length of a smectic structure.

Equations(2.9) and(2.10 are obtained under conditions

Ag<1 and7,<7,. The first inequality means that the inho-
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Subsequently the functior pe,(d,w) will be used as an
external force for the calculation of the response function. In
order to find the Sn#A surface eigenmotions we suppose the
external pressure to be equal to zgrg,=0.

For the existence of a nonzero solution of EGA12—
(2.14) whenp,,;=0, the system determinant should be equal

mogeneity length is much greater than the interlayer disto zero. This condition is the surface characteristic equation

tances. The second condition means that the shear wave
laxation time 7,=p/739> is much smaller than the

rgennectingw with g. In general this equation is very com-
plicated, but it can be simplified using the smallness of the

permeation characteristic time. Using typical numerical val-permeation constant, . It should be noted that contributions

ues of SmA material parameterigl9] K~10¢ dyn, B~2
x10" dyn/cnf, N,~10" cmf/dyn s, p~1 Glen?, 7,
~10 Pz, we gej<5x10° cm™?! from the first condition.
As for the conditionr, <7, it is essentially always satisfied.

It is convenient to consider EQ.9) as the equation de-
terminingSas a function ofj andw. This equation has three
solutionsS,(q,w), k=1,2,3, with positive real parts, provid-
ing the damping of surface waves with depth; — . Us-
ing the notationuq,u,, and u; for the amplitudes of the
corresponding displacements we get the general solution
the system(2.8) in the form

3
u=exp(iqx—iwt)k2l U, exp(Sq2),

3
vx=exp(iqx—iwt)k21 (0—iAp) Sk exXp(Sq2),

3
vZ=exqiqx—iwt)k21 (—iw— AU exp(Sq2),

3
p:exp(iqx—iwwgl {iwp+[73(St+1)—27,]9%

x(—iw—Ak)%ukexqsqu), (2.11

where

A=7,[SE—(Na)?].

The amplitudesu;,u,,us can be obtained from the
boundary condition$2.5—(2.7) which can be referred to the

of various modes to the total displacemerdre nonequiva-
lent. First of all we are interested in weakly damped modes,
0<ReS.<1, which have the largest amplitudg$0]. Be-
cause of the smallness of the permeation constanthe
inequalities|A(q, )|, |B(q,w)|, |C(q,w)|>1 are valid es-
sentially always. Hence the solution of the bulk characteristic
equation Eq.(2.9), which is determined by the permeation
S§~—iw7p, satisfies the inequality3|>1. The rest solu-
tions |S,],|S,| <|S;| may be found from the equation

of

!

inMS4+ l-ioTy 2+% _cz_qz 2
2
w2
—| NP —iwmy— | =0. (2.15
cxq

Then, as was pointed out ji0,11], from the boundary con-
ditions (2.12 and (2.14 it follows that |us|<<|uy|,|u,l.
Therefore we neglect the permeatioglzo, and we can
sum over two indices in the general soluti@11) and in the
boundary conditiong2.12—(2.14), which transforms them
to the equations

2

k; [ 730(SE+1)+iKg2]qu=0, (2.16

2 ®S,

2 | BSa+ e ~[wpting(3-S)a”+in' a1~ u
=0. (2.17)

Equations(2.16) and(2.17) are the boundary conditions for
the tangential and normal components of the stress tensor,

planez=0 due to the smallness of the oscillations. After respectively. The surface impermeability conditi@hl4) is

substitution of the general solutig@.11) into the boundary

fulfilled automatically.

conditions we obtain a set of equations for the amplitudes

Uq, Uy, andug:
3
gl[m(m—iAk)(siH)+qu2]quk=o, (2.12
3
2 (B&q+vq2—[wp+i 753~ S04 +in'q%]
(2.13

x(m—iAk)%)uk:—

(2.19

Ill. ANALYSIS OF CHARACTERISTIC EQUATIONS

To obtain the surface eigenfrequenciesand the rate of
dampingSfor a given wave numbeg it is necessary to solve
a system including bulkEqg. (2.15] and surface characteris-
tic equations that is obtained by equating to zero the deter-
minant of the systeni2.16),(2.17). The factors of powers of
Sin Eq. (2.15 have rather complicated dependencesaon
andg. In practice the problem is in determining the charac-
teristic curves in the pland®|,q) that describe the various
types of eigenmotions. The general solution of this problem
is rather cumbersome. Therefore it is convenient to separate
the plane [w|,q) into regions where it is possible to simplify
Eqg. (2.15. These regions are presented in Fig. 1.
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FIG. 1. The ranges in thgo|,q plane suitable for analyses of
the surface eigenmotions. I, E@.1); I, Eq. (3.5); I, Egs. (3.12
and(3.13.

A. Region |
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whereS; is given by Eq.(3.2). Obviously, Eq.(3.4) is in-
soluble because of the negativity on its right-hand side. Thus
the surface eigenmotions are absent in region |.

B. Region Il
The region Il is defined by the conditions

(3.5

1
wzwcng, |w|< —.
™

Its width is determined by the inequality

2
1—

<|w|TM.

c3q?
In this area the bulk characteristic equation has the form

iwp
2

Sho

. (3.6
739

Both solutions of this equation with positive real parts obey

First, we investigate the low-frequency area which is de{he refation R&, ,>1.

fined by the inequalities

o< —,

|w|<c,q. (3.1

In this area there is only one solution of the bulk character-

istic equation(2.15 satisfying the condition R§; <1,

o\ 112

w

S;=| \q)?~iwry———| , ReS;>0. (32
c2q

The second solution may be found from the equality

S§~

0Ty

This solution obeys the inequalifs|>1. It follows from
the tangential boundary conditi@@.16) that this mode has a
very small amplitude. Thus this mode can be neglected in th
boundary condition(2.17) for the normal component of the
stress tensdrl0,11], and Eqs(2.16 and(2.17 may have a

nonzero solution only when the surface characteristic equa-

tion

S
BSiq+yq?— Elw(wwsi 7392 +in'q)=0 (3.3

is valid.
As follows from conditiong3.1), we may neglect the last
term in Eqg.(3.3) and it transforms to

(3.9

The surface characteristic equation follows from bound-
ary conditions(2.16 and(2.17). Since in SmA liquid crys-
tals inequalityK p/ 7;§<1 is fulfilled it is possible to neglect
the term withK in Eq. (2.16). Moreover we can puy=0 in
Eqg. (2.17 as long as in this area the conditiom/B<1 is
valid. Thus we have

(S2+1)uy+(S5+1)u,=0, (3.7
wp2
Bq_ T)(Slul"‘SzUz):O. (38)

The determinant of the syste(8.7) and (3.8) will be equal
to zero for

w=*C,(q. (3.9
This means the possibility of existence in Sxiquid crys-
tal of a propagating surface Rayleigh wave of the second
sound type. This surface wave is formed by two modes
whose damping width depth is determined by the factor

expS, 02), where

¢ wp \/21\/§Ii\/2i\/5

2

(3.10

1.2
7]3012

The amplitudes of these modes are connected by condition
(3.7.

Taking into account the wave attenuation we obtain the

characteristic frequency
73C2 3/2
V 8p -

" _

w==*Cy(q—iw", = (3.1

w

Thus, surface eigenwaves of the second sound type can be

detected in Sn# liquid crystals under conditions
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1
w<—~2%x10F sec?,
™

)
~4X 107 cm L. o e
CZTM (Czru )—l B

q<

It is necessary to note that second sound cannot propagate in M
bulk along smectic planes because the interlayer distances

are invariable in this transverse wave, contrary to the surface 0
Rayleigh wave obtained.

C. Region IlI |a)|

The region 1l is restricted by fulfilment of either one of
inequalities FIG. 2. Solutions of characteristic equatidf), w=c,q in re-
gion II; (2), o= —i47539%/3p in region Il

1
o[> —, (3.12
™ |
> 5 <1,
or C27mq
|w|>c,Q. (3.13  we may replace the square root in E8.17) by the first three

terms of a power series expansion. In this case the charac-
Here the bulk characteristic equation has almost the samieristic equation is reduced to a linear one with a solution of

form as for an isotropic liquidi17], the diffusion type,
! 1) 1) 4m30°
st 2+ L i P le11-i 2P _0. (314 w=—i—3 . (3.19
73 7maq” 739° p

The difference is the presence of the viscosity coefficignt ~ The parameter of the expansion appears not to be small, but
which equals zero in ordinary liquids. This equation has twgaccounting for one more term results in only small correc-
solutions with ReS, >0, |S;J=1. The boundary condi- tions of numerical factors.

tions on a surface lead to the system of equations For
w ; 2 2 i 12 |l
2, |Ba= lop+ing(3—S)a*+in'q’]|Suy=0, =1
k=12 q Commd

(3.19

and Eq.(3.7). In SmA [21,22 the viscosities obey the in-
equality n' < n3, and we neglect;’ for simplicity. In this 5
case the systerf8.7), (3.15 may be easily solved. The roots @~| I7y~1
of Eq. (3.14 are known for the similar problem of surface c§q2 @17m
oscillations in an isotropic liquid17]:

Eq. (3.17 has no solutiongsee the Appendix In the area

the surface characteristic equation can be solved only nu-

S=1 merically.
"™ IFi{gure fztihovf thetde_pte_ndencetq(ﬂn |w| obtained from
.o olution of the characteristic equations.
52:(1_| Pz) . (3.16 soluti istic equations
739

IV. SURFACE FLUCTUATIONS
By equating to zero the determinant of the systé&v),

(3.15 we get the surface characteristic equation Surface laser light scattering is the most effective method

for studying surface motionjsl6]. By this method it is pos-
w2 sible to measure a power spectrum of thermal fluctuations for
) ( 1-—5—5- 2i a)TM)

low wave numbersg~10? cm™ !, [12—15. The spectral in-
tensity, or power spectrum, of surface displacement fluctua-
tions (|{q?), may be obtained using the fluctuation-
dissipation theorem23]

2

( 2 ! w
—i
CgTqu C2q

> 2(1—2inM). (3.17
C27vd

2kgT
2\ _—
In the area ofw,q satisfying the condition (1a%)o= 1) M x(q,), “.D
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where the response functiop(q, ) is determined by the
relation

{=—x(q,0)p** (4.2)

Here the frequencw is real.

The general expression for the response function is rather
cumbersome. Therefore we consider expressions for the
spectral intensity of surface fluctuations for several regions
of g and w only.

A. Region |
In area | defined by condition€3.1), together with the o ’_l
inequality g\ <1, we select three areas la, Ib and Ic as o
shown in Fig. 3. These areas are determined by the following
conditions: @
qu FIG. 3. Regions where the spectral intensities of fluctuations
W< , la, may be written in closed form: Ia, Ib, Ic, Eq&t.3); II, Eq. (3.5);
73 llla, Ilib, Egs. (4.8) and(4.10.
Kg? 739° Hence, the spectral intensity of surface displacement fluctua-
73 p
2 4kgTA
739 2 B
<w<cC,q, lc. (14l o™ : (4.9
w=ed T g0+ 4K+ )20 )
In area la we can obtain from E¢3.2) In area Ib we get from Eq3.2)
. WTy . WM .()\Q)z)
Si~gh| 1—i . Si=~(1-i (1+| ,
e ( 2<qx>2> TN 2,
e 2\2kgT y 1-(\q)2 2wy “5
a e VB7sqw®? [1+ \/ZwTMyq/ngw-i-()\q)2/2wTM]2+[1—()\q)Z/ZwTM]Z. .
|
In area Ic the damping of the surface wave is determined by a, = [+ 25 [>— V2,
the factor
and w” is given by Eq.(3.11). The expressior4.7) for the
A spectral intensity of fluctuations is valid for low frequencies
Sl 3 —1 . .
2 cq |w|< 7y, and in a rather narrow region only,
where|Im S;|>ReS;. For(|{,/%),, we obtain in this area |o—cyq| <"
2\ _ 2kgT C. Region IlI
el ooy i 4.6 _ -
Bp(w”+ 730"/4p%) In the area llla determined by the inequalities
B. Region Il ’
. _ ’ . VTS 55,
In region I, restricted by condition&.5), we get 2
1/4 2.2 2 "
739 | a1(C30°— o) taww ®
(1a*)o=ksT| 55 2_ 222 2 n2 >1, (4.9
Cop (0*—c50%) +4w‘w C2q

4.7
it is possible to omit the mode with damping fac®y, Eg.
where (3.16). In this case we obtain
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I @b unitdH

3x10° 4x10° 5x10°

()] (s‘l)

FIG. 5. The frequency dependencel afalculated by Eqg4.6),

2x10°

FIG. 4. The frequency dependence of the spectral intensity of4.7), and (4.9 for q=50 cni? (solid line; q=100 cni?

surface fluctuations= (| 4?),, /kgT calculated by Eqs4.4), (4.5),
and(4.11) for g=10* cm *.

4kgT 739°

<|§q|2>w: > a2 - 4.9

pw
In the area llIb determined by the conditions
oTy=>1,
- (4.10
OTV= 55, .

c30

it is necessary to keep both modes in E8.16. Thus, we
have

4kgTal'(q)
<|§q|2>w: 2 2 2 1 (411)
3po o +I'(q)]
where
1+8c272,0>
P(a)=—¢,

(dashed ling
V. DISCUSSION

In this paper we analyzed the characteristic equation and
showed that at low frequenciés|<," the SmA surface
eigenmotions are propagating waves of the second sound
type. These Rayleigh waves are caused by the elastic forces
arising from inhomogeneous undulation. Surface tension
does not affect the surface eigenmotions, in contrast to the
case of SmA thin films [7]. The character of propagation
and decay of these waves is described by E89)—(3.11).

As far as we know these elastic waves have not yet been
observed experimentally at the Sinsurface. At the same
time, Rayleigh modes have been registered at the surfaces of
polymer solutiond12—-14 and soft geld15]. In these sys-
tems the crossover from capillary to elastic waves was ob-
served.

At high frequenciedw|> 7, the eigenmotions repre-
sent damping shear waves similar to waves in isotropic vis-
cous liquids. For these waves the bulk attenuation coefficient
is of the same order as the wave number of the surface wave
[17]. However, there is an essential difference between the
eigenfrequencies of surface motions in &ntiquid crystals
and in viscous isotropic liquidsl7]. It is connected with the
considerable difference between the boundary condition for
the normal component of the stress tensor in Sriquid
crystals and isotropic liquids. This occurs because ASm-
elastic properties are mainly determined by the coeffidgent

The typical spectral intensities of surface displacementwe may neglect surface tension for mliquid crystals
fluctuations are shown in Figs. 4 and 5 as functions of frebecause of the validity of the inequalityg/B<1. One
quency. For wave numbers obeying the inequaldy would expect the surface tension to be important in the vi-
>1lc, Ty there is only one peaky=0, which corresponds cinity of the transition to the nematic pha$g,, where the

to the overdamped regiméig. 4). Forq<l/c,7y an addi-

elastic modulusB tends to zero. But this decrease is rather

tional peak appears ai~c,q corresponding to the elastic slow [24], namely, B~ 7%, where r=(Tya—T)/Tna, ¢
regime (Fig. 5. As q increases the peak moves to higher ~0.3-0.4. Therefore the surface tension is important in an
frequency, accompanied by a considerable spectral broadegxtremely narrow thermal interval.

ing. This additional peak is much smaller than the peak at [ow frequency motions may be investigated by mechani-

w=0.

cal excitation of surface waves in such a way as was done for
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soft gels[15]. It would be interesting to measure the surfaceEq. (3.17) reduces to
second sound velocity which according to E§.9 should
be twice the maximum velocity of second sound in the bulk.
The calculated spectral intensities of surface displacement _j w o« T (A2)
fluctuations characterize thermal Sisurface oscillations. c3rvo? c2g? Mo
The results obtained are suitable for description of the light
scattering spectrum in optical experiments. A contour of Lor-
entz type should be exhibited for low frequencies in accorFor |o|<7y" Eq. (A2) has no solutions obeying the in-
dance with Eq(4.4). In the intermediate region of frequen- equalities(Al) and|w|>c,q.
cies the form of the contour, E¢4.5), is sensitive to surface ~ When|w|> 7", Eq. (A2) transforms to
tension, in contrast to the surface eigenmotion spectrum. For

3/2

higher frequencies the spectral intensities of surface fluctua—
i i i - w
tions, Eqs.(4.9—(4.11), decrease more rapidly, i.e;w™". ( . - = —4\/—_i. (A3)
C27mdq
APPENDIX
Under the condition The solution of Eq(A3) contradicts Eq(Al). Thus we may
5 5 conclud_e that the surfac_e_ characteristic equati?) has
|o|>c537va?, (Al)  no solutions under conditiofAl).
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